फाइनाइट मैथ उदाहरण
2x-y+3z=82x−y+3z=8 , x-6y-z=0x−6y−z=0 , -6x+3y-9z=24−6x+3y−9z=24
चरण 1
Write the system as a matrix.
[2-1381-6-10-63-924]⎡⎢
⎢⎣2−1381−6−10−63−924⎤⎥
⎥⎦
चरण 2
चरण 2.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
चरण 2.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[22-1232821-6-10-63-924]⎡⎢
⎢
⎢⎣22−1232821−6−10−63−924⎤⎥
⎥
⎥⎦
चरण 2.1.2
R1R1 को सरल करें.
[1-123241-6-10-63-924]⎡⎢
⎢⎣1−123241−6−10−63−924⎤⎥
⎥⎦
[1-123241-6-10-63-924]⎡⎢
⎢⎣1−123241−6−10−63−924⎤⎥
⎥⎦
चरण 2.2
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
चरण 2.2.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1-123241-1-6+12-1-320-4-63-924]⎡⎢
⎢
⎢⎣1−123241−1−6+12−1−320−4−63−924⎤⎥
⎥
⎥⎦
चरण 2.2.2
R2R2 को सरल करें.
[1-123240-112-52-4-63-924]⎡⎢
⎢
⎢⎣1−123240−112−52−4−63−924⎤⎥
⎥
⎥⎦
[1-123240-112-52-4-63-924]
चरण 2.3
Perform the row operation R3=R3+6R1 to make the entry at 3,1 a 0.
चरण 2.3.1
Perform the row operation R3=R3+6R1 to make the entry at 3,1 a 0.
[1-123240-112-52-4-6+6⋅13+6(-12)-9+6(32)24+6⋅4]
चरण 2.3.2
R3 को सरल करें.
[1-123240-112-52-400048]
[1-123240-112-52-400048]
चरण 2.4
Multiply each element of R2 by -211 to make the entry at 2,2 a 1.
चरण 2.4.1
Multiply each element of R2 by -211 to make the entry at 2,2 a 1.
[1-12324-211⋅0-211(-112)-211(-52)-211⋅-400048]
चरण 2.4.2
R2 को सरल करें.
[1-123240151181100048]
[1-123240151181100048]
चरण 2.5
Multiply each element of R3 by 148 to make the entry at 3,4 a 1.
चरण 2.5.1
Multiply each element of R3 by 148 to make the entry at 3,4 a 1.
[1-12324015118110480480484848]
चरण 2.5.2
R3 को सरल करें.
[1-12324015118110001]
[1-12324015118110001]
चरण 2.6
Perform the row operation R2=R2-811R3 to make the entry at 2,4 a 0.
चरण 2.6.1
Perform the row operation R2=R2-811R3 to make the entry at 2,4 a 0.
[1-123240-811⋅01-811⋅0511-811⋅0811-811⋅10001]
चरण 2.6.2
R2 को सरल करें.
[1-123240151100001]
[1-123240151100001]
चरण 2.7
Perform the row operation R1=R1-4R3 to make the entry at 1,4 a 0.
चरण 2.7.1
Perform the row operation R1=R1-4R3 to make the entry at 1,4 a 0.
[1-4⋅0-12-4⋅032-4⋅04-4⋅10151100001]
चरण 2.7.2
R1 को सरल करें.
[1-123200151100001]
[1-123200151100001]
चरण 2.8
Perform the row operation R1=R1+12R2 to make the entry at 1,2 a 0.
चरण 2.8.1
Perform the row operation R1=R1+12R2 to make the entry at 1,2 a 0.
[1+12⋅0-12+12⋅132+12⋅5110+12⋅00151100001]
चरण 2.8.2
R1 को सरल करें.
[10191100151100001]
[10191100151100001]
[10191100151100001]
चरण 3
Use the result matrix to declare the final solution to the system of equations.
x+1911z=0
y+511z=0
0=1
चरण 4
The system is inconsistent so there is no solution.
कोई हल नहीं