कैलकुलस उदाहरण
चरण 1
चरण 1.1
दूसरा व्युत्पन्न पता करें.
चरण 1.1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1.1
अवकलन करें.
चरण 1.1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.2
का मान ज्ञात करें.
चरण 1.1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.2.3
को से गुणा करें.
चरण 1.1.2
दूसरा व्युत्पन्न पता करें.
चरण 1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
का मान ज्ञात करें.
चरण 1.1.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.2.3
को से गुणा करें.
चरण 1.1.2.3
का मान ज्ञात करें.
चरण 1.1.2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3.3
को से गुणा करें.
चरण 1.1.3
का दूसरा व्युत्पन्न बटे , है.
चरण 1.2
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
चरण 1.2.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 1.2.2
में से का गुणनखंड करें.
चरण 1.2.2.1
में से का गुणनखंड करें.
चरण 1.2.2.2
में से का गुणनखंड करें.
चरण 1.2.2.3
में से का गुणनखंड करें.
चरण 1.2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 1.2.4
को के बराबर सेट करें.
चरण 1.2.5
को के बराबर सेट करें और के लिए हल करें.
चरण 1.2.5.1
को के बराबर सेट करें.
चरण 1.2.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 2
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 3
-मानों के आसपास अंतराल करें जहां दूसरा व्युत्पन्न शून्य या अपरिभाषित हो.
चरण 4
चरण 4.1
व्यंजक में चर को से बदलें.
चरण 4.2
परिणाम को सरल बनाएंं.
चरण 4.2.1
प्रत्येक पद को सरल करें.
चरण 4.2.1.1
को के घात तक बढ़ाएं.
चरण 4.2.1.2
को से गुणा करें.
चरण 4.2.1.3
को से गुणा करें.
चरण 4.2.2
और जोड़ें.
चरण 4.2.3
अंतिम उत्तर है.
चरण 4.3
अंतराल पर ग्राफ अवतल ऊपर है क्योंकि धनात्मक है.
को अवतल ऊपर है क्योंकि धनात्मक है
को अवतल ऊपर है क्योंकि धनात्मक है
चरण 5
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
चरण 5.2.1
प्रत्येक पद को सरल करें.
चरण 5.2.1.1
एक का कोई भी घात एक होता है.
चरण 5.2.1.2
को से गुणा करें.
चरण 5.2.1.3
को से गुणा करें.
चरण 5.2.2
में से घटाएं.
चरण 5.2.3
अंतिम उत्तर है.
चरण 5.3
अंतराल पर ग्राफ अवतल नीचे है क्योंकि ऋणात्मक है.
पर अवतल नीचे है क्योंकि ऋणात्मक है
पर अवतल नीचे है क्योंकि ऋणात्मक है
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
प्रत्येक पद को सरल करें.
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
को से गुणा करें.
चरण 6.2.2
में से घटाएं.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
अंतराल पर ग्राफ अवतल ऊपर है क्योंकि धनात्मक है.
को अवतल ऊपर है क्योंकि धनात्मक है
को अवतल ऊपर है क्योंकि धनात्मक है
चरण 7
जब दूसरा व्युत्पन्न ऋणात्मक होता है तो ग्राफ अवतल नीचे होता है और दूसरा व्युत्पन्न धनात्मक होने पर अवतल ऊपर होता है.
को अवतल ऊपर है क्योंकि धनात्मक है
पर अवतल नीचे है क्योंकि ऋणात्मक है
को अवतल ऊपर है क्योंकि धनात्मक है
चरण 8