उदाहरण

सिद्ध कीजिए कि एक मूल अंतराल पर है
,
चरण 1
मध्यवर्ती मान प्रमेय बताता है कि, यदि अंतराल पर एक वास्तविक-मानवान निरंतर फलन है और एवं के बीच की संख्या है, तो इसमें एक निहित है. अंतराल ऐसा है कि .
चरण 2
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 3
की गणना करें
और स्टेप्स के लिए टैप करें…
चरण 3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 3.1.2
को से गुणा करें.
चरण 3.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
और जोड़ें.
चरण 3.2.2
में से घटाएं.
चरण 4
की गणना करें
और स्टेप्स के लिए टैप करें…
चरण 4.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को के घात तक बढ़ाएं.
चरण 4.1.2
को से गुणा करें.
चरण 4.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
और जोड़ें.
चरण 4.2.2
में से घटाएं.
चरण 5
समीकरण के प्रत्येक पक्ष को ग्राफ करें. हल प्रतिच्छेदन बिंदु का x-मान है.
चरण 6
मध्यवर्ती मान प्रमेय बताता है कि अंतराल पर एक मूल है क्योंकि पर एक सतत फलन है.
अंतराल पर मूल पर स्थित हैं.
चरण 7
अपनी समस्या दर्ज करें
Mathway के लिए जावास्क्रिप्ट और एक आधुनिक ब्राउज़र की ज़रूरत होती है।