एलजेब्रा उदाहरण

सिद्ध कीजिए कि एक मूल अंतराल पर है
,
चरण 1
मध्यवर्ती मान प्रमेय बताता है कि, यदि अंतराल पर एक वास्तविक-मानवान निरंतर फलन है और एवं के बीच की संख्या है, तो इसमें एक निहित है. अंतराल ऐसा है कि .
चरण 2
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 3
को के घात तक बढ़ाएं.
चरण 4
को के घात तक बढ़ाएं.
चरण 5
चूँकि अंतराल पर है, के लिए समीकरण को में से पर सेट करके मूल में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
समीकरण को के रूप में फिर से लिखें.
चरण 5.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
को के रूप में फिर से लिखें.
चरण 5.3.2
वास्तविक संख्या मानकर, करणी के अंतर्गत से पदों को बाहर निकालें.
चरण 6
मध्यवर्ती मान प्रमेय बताता है कि अंतराल पर एक मूल है क्योंकि पर एक सतत फलन है.
अंतराल पर मूल पर स्थित हैं.
चरण 7
अपनी समस्या दर्ज करें
Mathway के लिए जावास्क्रिप्ट और एक आधुनिक ब्राउज़र की ज़रूरत होती है।