Entrer un problème...
Trigonométrie Exemples
Étape 1
Élevez au carré les deux côtés de l’équation.
Étape 2
Étape 2.1
Réécrivez comme .
Étape 2.2
Développez à l’aide de la méthode FOIL.
Étape 2.2.1
Appliquez la propriété distributive.
Étape 2.2.2
Appliquez la propriété distributive.
Étape 2.2.3
Appliquez la propriété distributive.
Étape 2.3
Simplifiez et associez les termes similaires.
Étape 2.3.1
Simplifiez chaque terme.
Étape 2.3.1.1
Multipliez .
Étape 2.3.1.1.1
Multipliez par .
Étape 2.3.1.1.2
Élevez à la puissance .
Étape 2.3.1.1.3
Élevez à la puissance .
Étape 2.3.1.1.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.1.1.5
Additionnez et .
Étape 2.3.1.2
Multipliez par .
Étape 2.3.1.3
Multipliez par .
Étape 2.3.1.4
Multipliez .
Étape 2.3.1.4.1
Multipliez par .
Étape 2.3.1.4.2
Élevez à la puissance .
Étape 2.3.1.4.3
Élevez à la puissance .
Étape 2.3.1.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.1.4.5
Additionnez et .
Étape 2.3.2
Réorganisez les facteurs de .
Étape 2.3.3
Additionnez et .
Étape 2.4
Simplifiez en factorisant.
Étape 2.4.1
Déplacez .
Étape 2.4.2
Factorisez à partir de .
Étape 2.4.3
Factorisez à partir de .
Étape 2.4.4
Factorisez à partir de .
Étape 2.5
Appliquez l’identité pythagoricienne.
Étape 2.6
Multipliez par .
Étape 3
Élevez à la puissance .
Étape 4
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Soustrayez de .
Étape 5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Étape 6.2.1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 6.2.2
Simplifiez le côté droit.
Étape 6.2.2.1
La valeur exacte de est .
Étape 6.2.3
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 6.2.4
Simplifiez .
Étape 6.2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.2.4.2
Associez les fractions.
Étape 6.2.4.2.1
Associez et .
Étape 6.2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.4.3
Simplifiez le numérateur.
Étape 6.2.4.3.1
Multipliez par .
Étape 6.2.4.3.2
Soustrayez de .
Étape 6.2.5
Déterminez la période de .
Étape 6.2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2.5.2
Remplacez par dans la formule pour la période.
Étape 6.2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.2.5.4
Divisez par .
Étape 6.2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 7
Étape 7.1
Définissez égal à .
Étape 7.2
Résolvez pour .
Étape 7.2.1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 7.2.2
Simplifiez le côté droit.
Étape 7.2.2.1
La valeur exacte de est .
Étape 7.2.3
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 7.2.4
Soustrayez de .
Étape 7.2.5
Déterminez la période de .
Étape 7.2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 7.2.5.2
Remplacez par dans la formule pour la période.
Étape 7.2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.2.5.4
Divisez par .
Étape 7.2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 8
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 9
Consolidez les réponses.
, pour tout entier
Étape 10
Vérifiez chaque solution en la remplaçant dans et en résolvant.
, pour tout entier