Entrer un problème...
Trigonométrie Exemples
Étape 1
Réécrivez l’équation comme .
Étape 2
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Soustrayez de .
Étape 3
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Annulez le facteur commun de .
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Divisez par .
Étape 4
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 5
Étape 5.1
Évaluez .
Étape 6
Étape 6.1
Divisez chaque terme dans par .
Étape 6.2
Simplifiez le côté gauche.
Étape 6.2.1
Annulez le facteur commun de .
Étape 6.2.1.1
Annulez le facteur commun.
Étape 6.2.1.2
Réécrivez l’expression.
Étape 6.2.2
Annulez le facteur commun de .
Étape 6.2.2.1
Annulez le facteur commun.
Étape 6.2.2.2
Divisez par .
Étape 6.3
Simplifiez le côté droit.
Étape 6.3.1
Remplacez par une approximation.
Étape 6.3.2
Multipliez par .
Étape 6.3.3
Divisez par .
Étape 7
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 8
Étape 8.1
Soustrayez de .
Étape 8.2
Divisez chaque terme dans par et simplifiez.
Étape 8.2.1
Divisez chaque terme dans par .
Étape 8.2.2
Simplifiez le côté gauche.
Étape 8.2.2.1
Annulez le facteur commun de .
Étape 8.2.2.1.1
Annulez le facteur commun.
Étape 8.2.2.1.2
Réécrivez l’expression.
Étape 8.2.2.2
Annulez le facteur commun de .
Étape 8.2.2.2.1
Annulez le facteur commun.
Étape 8.2.2.2.2
Divisez par .
Étape 8.2.3
Simplifiez le côté droit.
Étape 8.2.3.1
Remplacez par une approximation.
Étape 8.2.3.2
Multipliez par .
Étape 8.2.3.3
Divisez par .
Étape 9
Étape 9.1
La période de la fonction peut être calculée en utilisant .
Étape 9.2
Remplacez par dans la formule pour la période.
Étape 9.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 9.4
Annulez le facteur commun de .
Étape 9.4.1
Annulez le facteur commun.
Étape 9.4.2
Réécrivez l’expression.
Étape 9.5
Annulez le facteur commun de .
Étape 9.5.1
Annulez le facteur commun.
Étape 9.5.2
Réécrivez l’expression.
Étape 10
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier