Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2.2
La dérivée de par rapport à est .
Étape 1.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.6
Additionnez et .
Étape 1.2.7
Multipliez par .
Étape 1.3
Différenciez en utilisant la règle de la constante.
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Additionnez et .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.5
Simplifiez l’expression.
Étape 2.3.5.1
Additionnez et .
Étape 2.3.5.2
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Divisez par .
Étape 5
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 6
Étape 6.1
La valeur exacte de est .
Étape 7
Étape 7.1
Ajoutez aux deux côtés de l’équation.
Étape 7.2
Additionnez et .
Étape 8
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 9
Étape 9.1
Simplifiez .
Étape 9.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 9.1.2
Associez les fractions.
Étape 9.1.2.1
Associez et .
Étape 9.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 9.1.3
Simplifiez le numérateur.
Étape 9.1.3.1
Multipliez par .
Étape 9.1.3.2
Soustrayez de .
Étape 9.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 9.2.1
Ajoutez aux deux côtés de l’équation.
Étape 9.2.2
Additionnez et .
Étape 10
La solution de l’équation est .
Étape 11
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 12
Soustrayez de .
Étape 13
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 14
Étape 14.1
Remplacez la variable par dans l’expression.
Étape 14.2
Simplifiez le résultat.
Étape 14.2.1
Soustrayez de .
Étape 14.2.2
La réponse finale est .
Étape 15
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 16
Soustrayez de .
Étape 17
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 18
Étape 18.1
Remplacez la variable par dans l’expression.
Étape 18.2
Simplifiez le résultat.
Étape 18.2.1
Soustrayez de .
Étape 18.2.2
La réponse finale est .
Étape 19
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 20