Entrer un problème...
Trigonométrie Exemples
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Placez le signe moins devant la fraction.
Étape 3.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 3.4
Divisez chaque terme dans par et simplifiez.
Étape 3.4.1
Divisez chaque terme dans par .
Étape 3.4.2
Simplifiez le côté gauche.
Étape 3.4.2.1
Annulez le facteur commun de .
Étape 3.4.2.1.1
Annulez le facteur commun.
Étape 3.4.2.1.2
Divisez par .
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Annulez le facteur commun à et .
Étape 5.2.3.1
Factorisez à partir de .
Étape 5.2.3.2
Annulez les facteurs communs.
Étape 5.2.3.2.1
Factorisez à partir de .
Étape 5.2.3.2.2
Annulez le facteur commun.
Étape 5.2.3.2.3
Réécrivez l’expression.
Étape 5.2.3.2.4
Divisez par .
Étape 5.3
Évaluez .
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Annulez le facteur commun de .
Étape 5.3.3.1
Annulez le facteur commun.
Étape 5.3.3.2
Réécrivez l’expression.
Étape 5.3.4
Les fonctions cosinus et arc cosinus sont inverses.
Étape 5.3.5
Annulez le facteur commun de .
Étape 5.3.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 5.3.5.2
Factorisez à partir de .
Étape 5.3.5.3
Annulez le facteur commun.
Étape 5.3.5.4
Réécrivez l’expression.
Étape 5.3.6
Multipliez.
Étape 5.3.6.1
Multipliez par .
Étape 5.3.6.2
Multipliez par .
Étape 5.4
Comme et , est l’inverse de .