Trigonométrie Exemples

Transformer en un intervalle (x-4)/(x+5)<4
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Associez et .
Étape 2.3
Associez les numérateurs sur le dénominateur commun.
Étape 2.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Soustrayez de .
Étape 2.4.4
Soustrayez de .
Étape 2.4.5
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.5.1
Factorisez à partir de .
Étape 2.4.5.2
Factorisez à partir de .
Étape 2.4.5.3
Factorisez à partir de .
Étape 2.5
Factorisez à partir de .
Étape 2.6
Réécrivez comme .
Étape 2.7
Factorisez à partir de .
Étape 2.8
Réécrivez comme .
Étape 2.9
Placez le signe moins devant la fraction.
Étape 3
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Soustrayez des deux côtés de l’équation.
Étape 6
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 7
Consolidez les solutions.
Étape 8
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 8.2
Soustrayez des deux côtés de l’équation.
Étape 8.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 9
Utilisez chaque racine pour créer des intervalles de test.
Étape 10
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.1.2
Remplacez par dans l’inégalité d’origine.
Étape 10.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 10.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.2.2
Remplacez par dans l’inégalité d’origine.
Étape 10.2.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 10.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.3.2
Remplacez par dans l’inégalité d’origine.
Étape 10.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 10.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 11
La solution se compose de tous les intervalles vrais.
ou
Étape 12
Convertissez l’inégalité en une notation d’intervalle.
Étape 13