Trigonométrie Exemples

Resolva para Z 11.5/(sin(Z))=13.8/(sin(60 degrés ))
Étape 1
Factorisez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Séparez les fractions.
Étape 1.2
Convertissez de à .
Étape 1.3
Divisez par .
Étape 1.4
La valeur exacte de est .
Étape 1.5
Multipliez par .
Étape 1.6
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Multipliez par .
Étape 1.6.2
Élevez à la puissance .
Étape 1.6.3
Élevez à la puissance .
Étape 1.6.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.6.5
Additionnez et .
Étape 1.6.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.6.6.1
Utilisez pour réécrire comme .
Étape 1.6.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.6.6.3
Associez et .
Étape 1.6.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.6.6.4.1
Annulez le facteur commun.
Étape 1.6.6.4.2
Réécrivez l’expression.
Étape 1.6.6.5
Évaluez l’exposant.
Étape 1.7
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Associez et .
Étape 1.7.2
Multipliez par .
Étape 1.7.3
Multipliez par .
Étape 1.8
Divisez par .
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Réécrivez l’expression.
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Divisez par .
Étape 5
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 6
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Évaluez .
Étape 7
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 8
Soustrayez de .
Étape 9
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
La période de la fonction peut être calculée en utilisant .
Étape 9.2
Remplacez par dans la formule pour la période.
Étape 9.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 9.4
Divisez par .
Étape 10
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier