Entrer un problème...
Trigonométrie Exemples
Étape 1
Définissez égal à .
Étape 2
Étape 2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.2
Définissez égal à et résolvez .
Étape 2.2.1
Définissez égal à .
Étape 2.2.2
Résolvez pour .
Étape 2.2.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.2.3
Simplifiez .
Étape 2.2.2.3.1
Réécrivez comme .
Étape 2.2.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.2.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3
Définissez égal à et résolvez .
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Étape 2.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.3.2.3
Réécrivez comme .
Étape 2.3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3