Entrer un problème...
Trigonométrie Exemples
Étape 1
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction tangente, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 2
Comme l’expression de chaque côté de l’équation a le même dénominateur, les numérateurs doivent être égaux.
Étape 3
Définissez l’intérieur de la fonction tangente égal à .
Étape 4
Comme l’expression de chaque côté de l’équation a le même dénominateur, les numérateurs doivent être égaux.
Étape 5
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 6
Étape 6.1
est d’environ qui est positif, alors retirez la valeur absolue
Étape 6.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.3
Déplacez à gauche de .
Étape 7
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier.
Étape 8
La tangente n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : où est un entier
Étape 9