Trigonométrie Exemples

Écrire sous forme usuelle 9y^2+41=4x^2+54y+8x
Étape 1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 1.3
Soustrayez des deux côtés de l’équation.
Étape 1.4
Déplacez .
Étape 1.5
Déplacez .
Étape 1.6
Remettez dans l’ordre et .
Étape 2
Soustrayez des deux côtés de l’équation.
Étape 3
Complétez le carré pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 3.2
Étudiez la forme du sommet d’une parabole.
Étape 3.3
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Remplacez les valeurs de et dans la formule .
Étape 3.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Factorisez à partir de .
Étape 3.3.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.2.1
Factorisez à partir de .
Étape 3.3.2.1.2.2
Annulez le facteur commun.
Étape 3.3.2.1.2.3
Réécrivez l’expression.
Étape 3.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
Annulez le facteur commun.
Étape 3.3.2.2.2
Réécrivez l’expression.
Étape 3.4
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Remplacez les valeurs de , et dans la formule .
Étape 3.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1.1
Élevez à la puissance .
Étape 3.4.2.1.2
Multipliez par .
Étape 3.4.2.1.3
Divisez par .
Étape 3.4.2.1.4
Multipliez par .
Étape 3.4.2.2
Additionnez et .
Étape 3.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 4
Remplacez par dans l’équation .
Étape 5
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 6
Complétez le carré pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 6.2
Étudiez la forme du sommet d’une parabole.
Étape 6.3
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Remplacez les valeurs de et dans la formule .
Étape 6.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1
Factorisez à partir de .
Étape 6.3.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.2.1
Factorisez à partir de .
Étape 6.3.2.1.2.2
Annulez le facteur commun.
Étape 6.3.2.1.2.3
Réécrivez l’expression.
Étape 6.3.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.1
Factorisez à partir de .
Étape 6.3.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.2.1
Factorisez à partir de .
Étape 6.3.2.2.2.2
Annulez le facteur commun.
Étape 6.3.2.2.2.3
Réécrivez l’expression.
Étape 6.3.2.2.2.4
Divisez par .
Étape 6.4
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Remplacez les valeurs de , et dans la formule .
Étape 6.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1.1
Élevez à la puissance .
Étape 6.4.2.1.2
Multipliez par .
Étape 6.4.2.1.3
Divisez par .
Étape 6.4.2.1.4
Multipliez par .
Étape 6.4.2.2
Soustrayez de .
Étape 6.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 7
Remplacez par dans l’équation .
Étape 8
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 9
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Soustrayez de .
Étape 9.2
Additionnez et .
Étape 10
Divisez chaque terme par pour rendre le côté droit égal à un.
Étape 11
Simplifiez chaque terme de l’équation afin de définir le côté droit égal à . La forme normalisée d’une ellipse ou hyperbole nécessite que le côté droit de l’équation soit .