Entrer un problème...
Trigonométrie Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
C’est la forme trigonométrique d’un nombre complexe où est le module et est l’angle créé sur le plan complexe.
Étape 3
Le module d’un nombre complexe est la distance par rapport à l’origine du plan complexe.
où
Étape 4
Remplacez les valeurs réelles de et .
Étape 5
Étape 5.1
Élevez à la puissance .
Étape 5.2
Réécrivez comme .
Étape 5.3
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6
L’angle du point sur le plan complexe est la tangente inverse de la partie complexe sur la partie réelle.
Étape 7
Comme l’argument est indéfini et est négatif, l’angle du point sur le plan complexe est .
Étape 8
Remplacez les valeurs de et .
Étape 9
Remplacez le côté droit de l’équation par la forme trigonométrique.