Trigonométrie Exemples

Résoudre le triangle a=35 , b=54 , A=28
, ,
Étape 1
La loi des sinus produit un résultat d’angle ambigu. Cela signifie qu’il y a permettant de résoudre correctement l’équation. Pour le premier triangle, utilisez la première valeur d’angle possible.
Résolvez pour le premier triangle.
Étape 2
La loi des sinus repose sur la proportionnalité des côtés et des angles dans les triangles. Cette loi indique que pour les angles d’un triangle non rectangle, chaque angle du triangle a le même rapport de la mesure de l’angle sur la valeur du sinus.
Étape 3
Remplacez les valeurs connues dans la loi du sinus pour déterminer .
Étape 4
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez les deux côtés de l’équation par .
Étape 4.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Annulez le facteur commun.
Étape 4.2.1.1.2
Réécrivez l’expression.
Étape 4.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Évaluez .
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.2.1.3
Multipliez par .
Étape 4.3
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 4.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Évaluez .
Étape 4.5
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 4.6
Soustrayez de .
Étape 4.7
La solution de l’équation est .
Étape 5
La somme de tous les angles dans un triangle est degrés.
Étape 6
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Additionnez et .
Étape 6.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.2.2
Soustrayez de .
Étape 7
La loi des sinus repose sur la proportionnalité des côtés et des angles dans les triangles. Cette loi indique que pour les angles d’un triangle non rectangle, chaque angle du triangle a le même rapport de la mesure de l’angle sur la valeur du sinus.
Étape 8
Remplacez les valeurs connues dans la loi du sinus pour déterminer .
Étape 9
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Factorisez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Évaluez .
Étape 9.1.2
Évaluez .
Étape 9.1.3
Divisez par .
Étape 9.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 9.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 9.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Multipliez chaque terme dans par .
Étape 9.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.2.1.1
Annulez le facteur commun.
Étape 9.3.2.1.2
Réécrivez l’expression.
Étape 9.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.4.1
Réécrivez l’équation comme .
Étape 9.4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 9.4.2.1
Divisez chaque terme dans par .
Étape 9.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 9.4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.4.2.2.1.1
Annulez le facteur commun.
Étape 9.4.2.2.1.2
Divisez par .
Étape 9.4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 9.4.2.3.1
Divisez par .
Étape 10
Pour le deuxième triangle, utilisez la deuxième valeur d’angle possible.
Résolvez pour le deuxième triangle.
Étape 11
La loi des sinus repose sur la proportionnalité des côtés et des angles dans les triangles. Cette loi indique que pour les angles d’un triangle non rectangle, chaque angle du triangle a le même rapport de la mesure de l’angle sur la valeur du sinus.
Étape 12
Remplacez les valeurs connues dans la loi du sinus pour déterminer .
Étape 13
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Multipliez les deux côtés de l’équation par .
Étape 13.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1.1.1
Annulez le facteur commun.
Étape 13.2.1.1.2
Réécrivez l’expression.
Étape 13.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 13.2.2.1.1
Évaluez .
Étape 13.2.2.1.2
Divisez par .
Étape 13.2.2.1.3
Multipliez par .
Étape 13.3
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 13.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 13.4.1
Évaluez .
Étape 13.5
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 13.6
Soustrayez de .
Étape 13.7
La solution de l’équation est .
Étape 14
La somme de tous les angles dans un triangle est degrés.
Étape 15
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Additionnez et .
Étape 15.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Soustrayez des deux côtés de l’équation.
Étape 15.2.2
Soustrayez de .
Étape 16
La loi des sinus repose sur la proportionnalité des côtés et des angles dans les triangles. Cette loi indique que pour les angles d’un triangle non rectangle, chaque angle du triangle a le même rapport de la mesure de l’angle sur la valeur du sinus.
Étape 17
Remplacez les valeurs connues dans la loi du sinus pour déterminer .
Étape 18
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 18.1
Factorisez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 18.1.1
Évaluez .
Étape 18.1.2
Évaluez .
Étape 18.1.3
Divisez par .
Étape 18.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 18.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 18.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 18.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 18.3.1
Multipliez chaque terme dans par .
Étape 18.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 18.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 18.3.2.1.1
Annulez le facteur commun.
Étape 18.3.2.1.2
Réécrivez l’expression.
Étape 18.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 18.4.1
Réécrivez l’équation comme .
Étape 18.4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 18.4.2.1
Divisez chaque terme dans par .
Étape 18.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 18.4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 18.4.2.2.1.1
Annulez le facteur commun.
Étape 18.4.2.2.1.2
Divisez par .
Étape 18.4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 18.4.2.3.1
Divisez par .
Étape 19
Ce sont les résultats pour tous les angles et côtés du triangle donné.
Combinaison du premier triangle :
Combinaison du deuxième triangle :