Entrer un problème...
Trigonométrie Exemples
, , ,
Étape 1
La loi des sinus repose sur la proportionnalité des côtés et des angles dans les triangles. Cette loi indique que pour les angles d’un triangle non rectangle, chaque angle du triangle a le même rapport de la mesure de l’angle sur la valeur du sinus.
Étape 2
Remplacez les valeurs connues dans la loi du sinus pour déterminer .
Étape 3
Étape 3.1
Factorisez chaque terme.
Étape 3.1.1
Évaluez .
Étape 3.1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.1.3
Évaluez .
Étape 3.1.4
Divisez par .
Étape 3.1.5
Associez et .
Étape 3.1.6
Divisez par .
Étape 3.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 3.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 3.3.1
Multipliez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Étape 3.3.2.1
Annulez le facteur commun de .
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Réécrivez l’expression.
Étape 3.4
Résolvez l’équation.
Étape 3.4.1
Réécrivez l’équation comme .
Étape 3.4.2
Divisez chaque terme dans par et simplifiez.
Étape 3.4.2.1
Divisez chaque terme dans par .
Étape 3.4.2.2
Simplifiez le côté gauche.
Étape 3.4.2.2.1
Annulez le facteur commun de .
Étape 3.4.2.2.1.1
Annulez le facteur commun.
Étape 3.4.2.2.1.2
Divisez par .
Étape 3.4.2.3
Simplifiez le côté droit.
Étape 3.4.2.3.1
Divisez par .
Étape 4
La loi des sinus repose sur la proportionnalité des côtés et des angles dans les triangles. Cette loi indique que pour les angles d’un triangle non rectangle, chaque angle du triangle a le même rapport de la mesure de l’angle sur la valeur du sinus.
Étape 5
Remplacez les valeurs connues dans la loi du sinus pour déterminer .
Étape 6
Étape 6.1
Factorisez chaque terme.
Étape 6.1.1
Évaluez .
Étape 6.1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.1.3
Évaluez .
Étape 6.1.4
Divisez par .
Étape 6.1.5
Associez et .
Étape 6.1.6
Divisez par .
Étape 6.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 6.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 6.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 6.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 6.3.1
Multipliez chaque terme dans par .
Étape 6.3.2
Simplifiez le côté gauche.
Étape 6.3.2.1
Annulez le facteur commun de .
Étape 6.3.2.1.1
Annulez le facteur commun.
Étape 6.3.2.1.2
Réécrivez l’expression.
Étape 6.4
Résolvez l’équation.
Étape 6.4.1
Réécrivez l’équation comme .
Étape 6.4.2
Divisez chaque terme dans par et simplifiez.
Étape 6.4.2.1
Divisez chaque terme dans par .
Étape 6.4.2.2
Simplifiez le côté gauche.
Étape 6.4.2.2.1
Annulez le facteur commun de .
Étape 6.4.2.2.1.1
Annulez le facteur commun.
Étape 6.4.2.2.1.2
Divisez par .
Étape 6.4.2.3
Simplifiez le côté droit.
Étape 6.4.2.3.1
Divisez par .
Étape 7
Ce sont les résultats pour tous les angles et côtés du triangle donné.