Trigonométrie Exemples

Tracer h(x)e^(x+1)+3
Étape 1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Réécrivez l’expression.
Étape 1.2.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.2.1
Annulez le facteur commun.
Étape 1.2.2.2.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Placez le signe moins devant la fraction.
Étape 2
Déterminez où l’expression est indéfinie.
Étape 3
Évaluez pour déterminer l’asymptote horizontale.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 3.1.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 3.2
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 3.3
Multipliez par .
Étape 4
Indiquez les asymptotes horizontales :
Étape 5
Il n’y a pas d’asymptote oblique car le degré du numérateur est inférieur ou égal au degré du dénominateur.
Aucune asymptote oblique
Étape 6
C’est l’ensemble de toutes les asymptotes.
Asymptotes verticales :
Asymptotes horizontales :
Aucune asymptote oblique
Étape 7