Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Pour déterminer la coordonnée du sommet, définissez l’intérieur de la valeur absolue égal à . Dans ce cas, .
Étape 1.2
Résolvez l’équation pour déterminer la coordonnée pour le sommet de la valeur absolue.
Étape 1.2.1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 1.2.2
Simplifiez le côté droit.
Étape 1.2.2.1
La valeur exacte de est .
Étape 1.2.3
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 1.2.4
Simplifiez .
Étape 1.2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.4.2
Associez les fractions.
Étape 1.2.4.2.1
Associez et .
Étape 1.2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.4.3
Simplifiez le numérateur.
Étape 1.2.4.3.1
Multipliez par .
Étape 1.2.4.3.2
Soustrayez de .
Étape 1.2.5
Déterminez la période de .
Étape 1.2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 1.2.5.2
Remplacez par dans la formule pour la période.
Étape 1.2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.2.5.4
Divisez par .
Étape 1.2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 1.2.7
Consolidez les réponses.
, pour tout entier
, pour tout entier
Étape 1.3
Remplacez la variable par dans l’expression.
Étape 1.4
Le sommet de la valeur absolue est .
Étape 2
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
La valeur absolue peut être représentée avec les points autour du sommet
Étape 4