Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Simplifiez chaque terme.
Étape 1.2.1
Associez et .
Étape 1.2.2
Appliquez la propriété distributive.
Étape 1.2.3
Annulez le facteur commun de .
Étape 1.2.3.1
Factorisez à partir de .
Étape 1.2.3.2
Factorisez à partir de .
Étape 1.2.3.3
Annulez le facteur commun.
Étape 1.2.3.4
Réécrivez l’expression.
Étape 1.2.4
Associez et .
Étape 1.2.5
Multipliez par .
Étape 1.3
Déplacez .
Étape 1.4
Remettez dans l’ordre et .
Étape 2
C’est la forme d’une hyperbole. Utilisez cette forme pour déterminer les valeurs utilisées pour déterminer les sommets et les asymptotes de l’hyperbole.
Étape 3
Faites correspondre les valeurs dans cette hyperbole avec celles de la forme normalisée. La variable représente le décalage x par rapport à l’origine, représente le décalage y par rapport à l’origine, .
Étape 4
Le centre d’une hyperbole suit la forme de . Remplacez les valeurs de et .
Étape 5
Étape 5.1
Déterminez la distance du centre à un foyer de l’hyperbole en utilisant la formule suivante.
Étape 5.2
Remplacez les valeurs de et dans la formule.
Étape 5.3
Simplifiez
Étape 5.3.1
Réécrivez comme .
Étape 5.3.1.1
Utilisez pour réécrire comme .
Étape 5.3.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.1.3
Associez et .
Étape 5.3.1.4
Annulez le facteur commun de .
Étape 5.3.1.4.1
Annulez le facteur commun.
Étape 5.3.1.4.2
Réécrivez l’expression.
Étape 5.3.1.5
Évaluez l’exposant.
Étape 5.3.2
Simplifiez l’expression.
Étape 5.3.2.1
Un à n’importe quelle puissance est égal à un.
Étape 5.3.2.2
Additionnez et .
Étape 6
Étape 6.1
Le premier sommet d’une hyperbole peut être déterminé en ajoutant à .
Étape 6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 6.3
Le deuxième sommet d’une hyperbole peut être déterminé en soustrayant à .
Étape 6.4
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 6.5
Les sommets d’une hyperbole suivent la forme de . Les hyperboles ont deux sommets.
Étape 7
Étape 7.1
Le premier foyer d’une hyperbole peut être déterminé en ajoutant à .
Étape 7.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7.3
Le deuxième foyer d’une hyperbole peut être déterminé en soustrayant à .
Étape 7.4
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7.5
Les foyers d’une hyperbole suivent la forme de . Les hyperboles ont deux foyers.
Étape 8
Étape 8.1
Déterminez la distance du paramètre focal l’hyperbole en utilisant la formule suivante.
Étape 8.2
Remplacez les valeurs de et dans la formule.
Étape 8.3
Simplifiez
Étape 8.3.1
Un à n’importe quelle puissance est égal à un.
Étape 8.3.2
Multipliez par .
Étape 8.3.3
Associez et simplifiez le dénominateur.
Étape 8.3.3.1
Multipliez par .
Étape 8.3.3.2
Élevez à la puissance .
Étape 8.3.3.3
Élevez à la puissance .
Étape 8.3.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 8.3.3.5
Additionnez et .
Étape 8.3.3.6
Réécrivez comme .
Étape 8.3.3.6.1
Utilisez pour réécrire comme .
Étape 8.3.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 8.3.3.6.3
Associez et .
Étape 8.3.3.6.4
Annulez le facteur commun de .
Étape 8.3.3.6.4.1
Annulez le facteur commun.
Étape 8.3.3.6.4.2
Réécrivez l’expression.
Étape 8.3.3.6.5
Évaluez l’exposant.
Étape 9
Les asymptotes suivent la forme car cette hyperbole ouvre vers la gauche et vers la droite.
Étape 10
Étape 10.1
Additionnez et .
Étape 10.2
Associez et .
Étape 11
Étape 11.1
Additionnez et .
Étape 11.2
Associez et .
Étape 12
Cette hyperbole a deux asymptotes.
Étape 13
Ces valeurs représentent les valeurs importantes pour représenter graphiquement et analyser une hyperbole.
Centre :
Sommets :
Foyers :
Excentricité :
Paramètre focal :
Asymptotes : ,
Étape 14