Trigonométrie Exemples

cos(8t)
Étape 1
Utilisez la forme acos(bx-c)+d afin de déterminer les variables pour déterminer l’amplitude, la période, le déphasage et le décalage vertical.
a=1
b=8
c=0
d=0
Étape 2
Déterminez l’amplitude |a|.
Amplitude : 1
Étape 3
Déterminez la période de cos(8x).
Appuyez ici pour voir plus d’étapes...
Étape 3.1
La période de la fonction peut être calculée en utilisant 2π|b|.
2π|b|
Étape 3.2
Remplacez b par 8 dans la formule pour la période.
2π|8|
Étape 3.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre 0 et 8 est 8.
2π8
Étape 3.4
Annulez le facteur commun à 2 et 8.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Factorisez 2 à partir de 2π.
2(π)8
Étape 3.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Factorisez 2 à partir de 8.
2π24
Étape 3.4.2.2
Annulez le facteur commun.
2π24
Étape 3.4.2.3
Réécrivez l’expression.
π4
π4
π4
π4
Étape 4
Déterminez le déphasage en utilisant la formule cb.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Le déphasage de la fonction peut être calculé à partir de cb.
Déphasage : cb
Étape 4.2
Remplacez les valeurs de c et b dans l’équation pour le déphasage.
Déphasage : 08
Étape 4.3
Divisez 0 par 8.
Déphasage : 0
Déphasage : 0
Étape 5
Indiquez les propriétés de la fonction trigonométrique.
Amplitude : 1
Période : π4
Déphasage : Aucune
Décalage vertical : Aucune
Étape 6
Sélectionnez quelques points à représenter graphiquement.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Déterminez le point sur x=0.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Remplacez la variable x par 0 dans l’expression.
f(0)=cos(8(0))
Étape 6.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.1
Multipliez 8 par 0.
f(0)=cos(0)
Étape 6.1.2.2
La valeur exacte de cos(0) est 1.
f(0)=1
Étape 6.1.2.3
La réponse finale est 1.
1
1
1
Étape 6.2
Déterminez le point sur x=π16.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Remplacez la variable x par π16 dans l’expression.
f(π16)=cos(8(π16))
Étape 6.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Annulez le facteur commun de 8.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1.1
Factorisez 8 à partir de 16.
f(π16)=cos(8(π8(2)))
Étape 6.2.2.1.2
Annulez le facteur commun.
f(π16)=cos(8(π82))
Étape 6.2.2.1.3
Réécrivez l’expression.
f(π16)=cos(π2)
f(π16)=cos(π2)
Étape 6.2.2.2
La valeur exacte de cos(π2) est 0.
f(π16)=0
Étape 6.2.2.3
La réponse finale est 0.
0
0
0
Étape 6.3
Déterminez le point sur x=π8.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Remplacez la variable x par π8 dans l’expression.
f(π8)=cos(8(π8))
Étape 6.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Annulez le facteur commun de 8.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1
Annulez le facteur commun.
f(π8)=cos(8(π8))
Étape 6.3.2.1.2
Réécrivez l’expression.
f(π8)=cos(π)
f(π8)=cos(π)
Étape 6.3.2.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
f(π8)=-cos(0)
Étape 6.3.2.3
La valeur exacte de cos(0) est 1.
f(π8)=-11
Étape 6.3.2.4
Multipliez -1 par 1.
f(π8)=-1
Étape 6.3.2.5
La réponse finale est -1.
-1
-1
-1
Étape 6.4
Déterminez le point sur x=3π16.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Remplacez la variable x par 3π16 dans l’expression.
f(3π16)=cos(8(3π16))
Étape 6.4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Annulez le facteur commun de 8.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1.1
Factorisez 8 à partir de 16.
f(3π16)=cos(8(3π8(2)))
Étape 6.4.2.1.2
Annulez le facteur commun.
f(3π16)=cos(8(3π82))
Étape 6.4.2.1.3
Réécrivez l’expression.
f(3π16)=cos(3π2)
f(3π16)=cos(3π2)
Étape 6.4.2.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
f(3π16)=cos(π2)
Étape 6.4.2.3
La valeur exacte de cos(π2) est 0.
f(3π16)=0
Étape 6.4.2.4
La réponse finale est 0.
0
0
0
Étape 6.5
Déterminez le point sur x=π4.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Remplacez la variable x par π4 dans l’expression.
f(π4)=cos(8(π4))
Étape 6.5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Annulez le facteur commun de 4.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1.1
Factorisez 4 à partir de 8.
f(π4)=cos(4(2)(π4))
Étape 6.5.2.1.2
Annulez le facteur commun.
f(π4)=cos(4(2(π4)))
Étape 6.5.2.1.3
Réécrivez l’expression.
f(π4)=cos(2π)
f(π4)=cos(2π)
Étape 6.5.2.2
Soustrayez des rotations complètes de 2π jusqu’à ce que l’angle soit supérieur ou égal à 0 et inférieur à 2π.
f(π4)=cos(0)
Étape 6.5.2.3
La valeur exacte de cos(0) est 1.
f(π4)=1
Étape 6.5.2.4
La réponse finale est 1.
1
1
1
Étape 6.6
Indiquez les points dans une table.
xf(x)01π160π8-13π160π41
xf(x)01π160π8-13π160π41
Étape 7
La fonction trigonométrique peut être représentée graphiquement en utilisant l’amplitude, la période, le déphasage, le décalage vertical et les points.
Amplitude : 1
Période : π4
Déphasage : Aucune
Décalage vertical : Aucune
xf(x)01π160π8-13π160π41
Étape 8
 [x2  12  π  xdx ]