Trigonométrie Exemples

Resolva para x 24^2=13.4^2+14.8^2-2*13.4*14.8cos(x)
Étape 1
Réécrivez l’équation comme .
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Élevez à la puissance .
Étape 2.1.2
Élevez à la puissance .
Étape 2.1.3
Multipliez par .
Étape 2.1.4
Multipliez par .
Étape 2.2
Additionnez et .
Étape 3
Élevez à la puissance .
Étape 4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Soustrayez de .
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez par .
Étape 6
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 7
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Évaluez .
Étape 8
La fonction cosinus est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 9
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Soustrayez de .
Étape 10
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
La période de la fonction peut être calculée en utilisant .
Étape 10.2
Remplacez par dans la formule pour la période.
Étape 10.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 10.4
Divisez par .
Étape 11
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier