Trigonométrie Exemples

Resolva para x sin(x)cos(x)tan(x)=sin(0)^2
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Réécrivez en termes de sinus et de cosinus.
Étape 2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Factorisez à partir de .
Étape 2.1.2.2
Annulez le facteur commun.
Étape 2.1.2.3
Réécrivez l’expression.
Étape 2.1.3
Élevez à la puissance .
Étape 2.1.4
Élevez à la puissance .
Étape 2.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.6
Additionnez et .
Étape 2.1.7
La valeur exacte de est .
Étape 2.1.8
L’élévation de à toute puissance positive produit .
Étape 2.1.9
Multipliez par .
Étape 2.2
Additionnez et .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez comme .
Étape 3.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.3
Plus ou moins est .
Étape 3.3
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 3.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
La valeur exacte de est .
Étape 3.5
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 3.6
Soustrayez de .
Étape 3.7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
La période de la fonction peut être calculée en utilisant .
Étape 3.7.2
Remplacez par dans la formule pour la période.
Étape 3.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.7.4
Divisez par .
Étape 3.8
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier
, pour tout entier
Étape 4
Consolidez les réponses.
, pour tout entier