Entrer un problème...
Trigonométrie Exemples
Étape 1
Additionnez et .
Étape 2
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Associez les termes opposés dans .
Étape 2.2.1
Soustrayez de .
Étape 2.2.2
Additionnez et .
Étape 3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 5
Étape 5.1
Simplifiez le numérateur.
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Multipliez par .
Étape 5.1.3
Appliquez la propriété distributive.
Étape 5.1.4
Multipliez par .
Étape 5.1.5
Remettez les termes dans l’ordre.
Étape 5.1.6
Réécrivez en forme factorisée.
Étape 5.1.6.1
Factorisez à partir de .
Étape 5.1.6.1.1
Factorisez à partir de .
Étape 5.1.6.1.2
Factorisez à partir de .
Étape 5.1.6.1.3
Factorisez à partir de .
Étape 5.1.6.1.4
Factorisez à partir de .
Étape 5.1.6.1.5
Factorisez à partir de .
Étape 5.1.6.2
Factorisez par regroupement.
Étape 5.1.6.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 5.1.6.2.1.1
Factorisez à partir de .
Étape 5.1.6.2.1.2
Réécrivez comme plus
Étape 5.1.6.2.1.3
Appliquez la propriété distributive.
Étape 5.1.6.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 5.1.6.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 5.1.6.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 5.1.6.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 5.1.7
Réécrivez comme .
Étape 5.1.7.1
Réécrivez comme .
Étape 5.1.7.2
Ajoutez des parenthèses.
Étape 5.1.8
Extrayez les termes de sous le radical.
Étape 5.2
Multipliez par .
Étape 5.3
Simplifiez .
Étape 6
La réponse finale est la combinaison des deux solutions.