Trigonométrie Exemples

Resolva para x sec(x+15)=csc(20+9)
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Additionnez et .
Étape 1.2
Évaluez .
Étape 2
Prenez la sécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la sécante.
Étape 3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez .
Étape 4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Soustrayez de .
Étape 5
La fonction sécante est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Soustrayez de .
Étape 6.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.2.2
Soustrayez de .
Étape 7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
La période de la fonction peut être calculée en utilisant .
Étape 7.2
Remplacez par dans la formule pour la période.
Étape 7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.4
Divisez par .
Étape 8
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier