Entrer un problème...
Trigonométrie Exemples
Étape 1
Prenez la cosécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la cosécante.
Étape 2
Étape 2.1
La valeur exacte de est .
Étape 3
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Annulez le facteur commun de .
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.3.2
Multipliez .
Étape 3.3.2.1
Multipliez par .
Étape 3.3.2.2
Multipliez par .
Étape 4
La fonction cosécante est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 5
Étape 5.1
Simplifiez
Étape 5.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.1.2
Associez et .
Étape 5.1.3
Associez les numérateurs sur le dénominateur commun.
Étape 5.1.4
Soustrayez de .
Étape 5.1.4.1
Remettez dans l’ordre et .
Étape 5.1.4.2
Soustrayez de .
Étape 5.2
Divisez chaque terme dans par et simplifiez.
Étape 5.2.1
Divisez chaque terme dans par .
Étape 5.2.2
Simplifiez le côté gauche.
Étape 5.2.2.1
Annulez le facteur commun de .
Étape 5.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.1.2
Divisez par .
Étape 5.2.3
Simplifiez le côté droit.
Étape 5.2.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.2.3.2
Multipliez .
Étape 5.2.3.2.1
Multipliez par .
Étape 5.2.3.2.2
Multipliez par .
Étape 6
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.4
Annulez le facteur commun à et .
Étape 6.4.1
Factorisez à partir de .
Étape 6.4.2
Annulez les facteurs communs.
Étape 6.4.2.1
Factorisez à partir de .
Étape 6.4.2.2
Annulez le facteur commun.
Étape 6.4.2.3
Réécrivez l’expression.
Étape 7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier