Trigonométrie Exemples

Resolva para x 8sin(x/2)^2-10sin(x/2)+3=0
Étape 1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Remplacez toutes les occurrences de par .
Étape 1.2
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Factorisez à partir de .
Étape 1.2.1.2
Réécrivez comme plus
Étape 1.2.1.3
Appliquez la propriété distributive.
Étape 1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 1.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Divisez chaque terme dans par .
Étape 3.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.2.1.2
Divisez par .
Étape 3.2.3
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 3.2.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
La valeur exacte de est .
Étape 3.2.5
Multipliez les deux côtés de l’équation par .
Étape 3.2.6
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.1.1.1
Annulez le facteur commun.
Étape 3.2.6.1.1.2
Réécrivez l’expression.
Étape 3.2.6.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.2.1.1
Factorisez à partir de .
Étape 3.2.6.2.1.2
Annulez le facteur commun.
Étape 3.2.6.2.1.3
Réécrivez l’expression.
Étape 3.2.7
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 3.2.8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.1
Multipliez les deux côtés de l’équation par .
Étape 3.2.8.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.1.1.1
Annulez le facteur commun.
Étape 3.2.8.2.1.1.2
Réécrivez l’expression.
Étape 3.2.8.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.2.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.8.2.2.1.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.2.1.2.1
Associez et .
Étape 3.2.8.2.2.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.8.2.2.1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.2.1.2.3.1
Factorisez à partir de .
Étape 3.2.8.2.2.1.2.3.2
Annulez le facteur commun.
Étape 3.2.8.2.2.1.2.3.3
Réécrivez l’expression.
Étape 3.2.8.2.2.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.2.1.3.1
Déplacez à gauche de .
Étape 3.2.8.2.2.1.3.2
Soustrayez de .
Étape 3.2.9
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.9.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2.9.2
Remplacez par dans la formule pour la période.
Étape 3.2.9.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 3.2.9.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.2.9.5
Multipliez par .
Étape 3.2.10
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.2.1.2
Divisez par .
Étape 4.2.3
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 4.2.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Évaluez .
Étape 4.2.5
Multipliez les deux côtés de l’équation par .
Étape 4.2.6
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.6.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.6.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.6.1.1.1
Annulez le facteur commun.
Étape 4.2.6.1.1.2
Réécrivez l’expression.
Étape 4.2.6.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.6.2.1
Multipliez par .
Étape 4.2.7
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 4.2.8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.8.1
Multipliez les deux côtés de l’équation par .
Étape 4.2.8.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.8.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.8.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.8.2.1.1.1
Annulez le facteur commun.
Étape 4.2.8.2.1.1.2
Réécrivez l’expression.
Étape 4.2.8.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.8.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.8.2.2.1.1
Soustrayez de .
Étape 4.2.8.2.2.1.2
Multipliez par .
Étape 4.2.9
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.9.1
La période de la fonction peut être calculée en utilisant .
Étape 4.2.9.2
Remplacez par dans la formule pour la période.
Étape 4.2.9.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 4.2.9.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.2.9.5
Multipliez par .
Étape 4.2.10
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 5
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier