Trigonométrie Exemples

Resolva para x logarithme de 2x^2=8
Étape 1
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Élevez à la puissance .
Étape 2.2.3.2
Divisez par .
Étape 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.1
Factorisez à partir de .
Étape 2.4.1.2
Réécrivez comme .
Étape 2.4.2
Extrayez les termes de sous le radical.
Étape 2.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :