Entrer un problème...
Trigonométrie Exemples
Étape 1
Divisez par .
Étape 2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 3
Étape 3.1
Évaluez .
Étape 4
La fonction tangente est négative dans les deuxième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 5
Étape 5.1
Ajoutez à .
Étape 5.2
L’angle résultant de est positif et coterminal avec .
Étape 6
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.4
Divisez par .
Étape 7
Étape 7.1
Ajoutez à pour déterminer l’angle positif.
Étape 7.2
Remplacez par l’approximation décimale.
Étape 7.3
Soustrayez de .
Étape 7.4
Indiquez les nouveaux angles.
Étape 8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 9
Consolidez et en .
, pour tout entier