Trigonométrie Exemples

Resolva para x tan(x)=4tan(x)- racine carrée de 3
Étape 1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Soustrayez de .
Étape 2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
La valeur exacte de est .
Étape 5
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 6
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Associez et .
Étape 6.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Déplacez à gauche de .
Étape 6.3.2
Additionnez et .
Étape 7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
La période de la fonction peut être calculée en utilisant .
Étape 7.2
Remplacez par dans la formule pour la période.
Étape 7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.4
Divisez par .
Étape 8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 9
Consolidez les réponses.
, pour tout entier