Trigonométrie Exemples

Trouver la fonction réciproque 2cos(x)
Étape 1
Interchangez les variables.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 3
Replace with to show the final answer.
Étape 4
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour vérifier l’inverse, vérifiez si et .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez la fonction de résultat composé.
Étape 4.2.2
Évaluez en remplaçant la valeur de par .
Étape 4.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Annulez le facteur commun.
Étape 4.2.3.2
Divisez par .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez la fonction de résultat composé.
Étape 4.3.2
Évaluez en remplaçant la valeur de par .
Étape 4.3.3
Les fonctions cosinus et arc cosinus sont inverses.
Étape 4.3.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Annulez le facteur commun.
Étape 4.3.4.2
Réécrivez l’expression.
Étape 4.4
Comme et , est l’inverse de .