Trigonométrie Exemples

Trouver la fonction réciproque 2y=6x+3
Étape 1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Annulez le facteur commun.
Étape 1.2.1.2
Divisez par .
Étape 1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Factorisez à partir de .
Étape 1.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.2.1
Factorisez à partir de .
Étape 1.3.1.2.2
Annulez le facteur commun.
Étape 1.3.1.2.3
Réécrivez l’expression.
Étape 1.3.1.2.4
Divisez par .
Étape 2
Interchangez les variables.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Divisez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Divisez par .
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.3.3.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.3.1.2.2
Factorisez à partir de .
Étape 3.3.3.1.2.3
Annulez le facteur commun.
Étape 3.3.3.1.2.4
Réécrivez l’expression.
Étape 3.3.3.1.3
Placez le signe moins devant la fraction.
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Factorisez à partir de .
Étape 5.2.3.2
Factorisez à partir de .
Étape 5.2.3.3
Factorisez à partir de .
Étape 5.2.3.4
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.4.1
Factorisez à partir de .
Étape 5.2.3.4.2
Annulez le facteur commun.
Étape 5.2.3.4.3
Réécrivez l’expression.
Étape 5.2.3.4.4
Divisez par .
Étape 5.2.4
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.1
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.4.2
Soustrayez de .
Étape 5.2.4.3
Divisez par .
Étape 5.2.4.4
Additionnez et .
Étape 5.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Appliquez la propriété distributive.
Étape 5.3.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.2.1
Annulez le facteur commun.
Étape 5.3.3.2.2
Réécrivez l’expression.
Étape 5.3.3.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.3.1
Multipliez par .
Étape 5.3.3.3.2
Associez et .
Étape 5.3.3.4
Placez le signe moins devant la fraction.
Étape 5.3.4
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.1
Additionnez et .
Étape 5.3.4.2
Additionnez et .
Étape 5.4
Comme et , est l’inverse de .