Entrer un problème...
Trigonométrie Exemples
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 3.2.1
Multipliez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Associez et .
Étape 3.2.2.2
Annulez le facteur commun de .
Étape 3.2.2.2.1
Annulez le facteur commun.
Étape 3.2.2.2.2
Réécrivez l’expression.
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Déplacez à gauche de .
Étape 3.3
Prenez l’arc cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur de l’arc cosinus.
Étape 3.4
Ajoutez aux deux côtés de l’équation.
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Simplifiez chaque terme.
Étape 5.2.3.1
Associez et .
Étape 5.2.3.2
Annulez le facteur commun de .
Étape 5.2.3.2.1
Annulez le facteur commun.
Étape 5.2.3.2.2
Réécrivez l’expression.
Étape 5.2.3.3
Les fonctions cosinus et arc cosinus sont inverses.
Étape 5.2.4
Associez les termes opposés dans .
Étape 5.2.4.1
Additionnez et .
Étape 5.2.4.2
Additionnez et .
Étape 5.3
Évaluez .
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Associez les termes opposés dans .
Étape 5.3.3.1
Soustrayez de .
Étape 5.3.3.2
Additionnez et .
Étape 5.3.4
Associez et .
Étape 5.4
Comme et , est l’inverse de .