Trigonométrie Exemples

Trouver la fonction réciproque f(x)=sec(x/4)
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Prenez la sécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la sécante.
Étape 3.3
Multipliez les deux côtés de l’équation par .
Étape 3.4
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Annulez le facteur commun.
Étape 3.4.1.2
Réécrivez l’expression.
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Annulez le facteur commun.
Étape 5.3.3.2
Divisez par .
Étape 5.3.4
Les fonctions sécante et arc sécante sont inverses.
Étape 5.4
Comme et , est l’inverse de .