Trigonométrie Exemples

Trouver la fonction réciproque -tan(x+7)-4
Étape 1
Interchangez les variables.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.3.2.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1.1
Déplacez le moins un du dénominateur de .
Étape 2.3.3.1.2
Réécrivez comme .
Étape 2.3.3.1.3
Divisez par .
Étape 2.4
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 2.5
Soustrayez des deux côtés de l’équation.
Étape 3
Replace with to show the final answer.
Étape 4
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour vérifier l’inverse, vérifiez si et .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez la fonction de résultat composé.
Étape 4.2.2
Évaluez en remplaçant la valeur de par .
Étape 4.2.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1.1
Appliquez la propriété distributive.
Étape 4.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1.2.1
Multipliez par .
Étape 4.2.3.1.2.2
Multipliez par .
Étape 4.2.3.1.3
Multipliez par .
Étape 4.2.3.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.1
Soustrayez de .
Étape 4.2.3.2.2
Additionnez et .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez la fonction de résultat composé.
Étape 4.3.2
Évaluez en remplaçant la valeur de par .
Étape 4.3.3
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Additionnez et .
Étape 4.3.3.2
Additionnez et .
Étape 4.3.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Les fonctions tangente et arc tangente sont inverses.
Étape 4.3.4.2
Appliquez la propriété distributive.
Étape 4.3.4.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.3.1
Multipliez par .
Étape 4.3.4.3.2
Multipliez par .
Étape 4.3.4.4
Multipliez par .
Étape 4.3.5
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Soustrayez de .
Étape 4.3.5.2
Additionnez et .
Étape 4.4
Comme et , est l’inverse de .