Trigonométrie Exemples

Trouver la fonction réciproque y=arcsin(5-3x^2)
Étape 1
Interchangez les variables.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Prenez l’arc sinus inverse des deux côtés de l’équation pour extraire de l’intérieur de l’arc sinus.
Étape 2.3
Soustrayez des deux côtés de l’équation.
Étape 2.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Divisez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1
Annulez le facteur commun.
Étape 2.4.2.1.2
Divisez par .
Étape 2.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1.1
Placez le signe moins devant la fraction.
Étape 2.4.3.1.2
La division de deux valeurs négatives produit une valeur positive.
Étape 2.5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Remplacez par pour montrer la réponse finale.
Étape 4
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Le domaine de l’inverse est la plage de la fonction initiale et inversement. Déterminez le domaine et la plage de et puis comparez-les.
Étape 4.2
Déterminez la plage de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Étape 4.3
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 4.3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Soustrayez des deux côtés de l’inégalité.
Étape 4.3.2.2
Comme l’expression de chaque côté de l’équation a le même dénominateur, les numérateurs doivent être égaux.
Étape 4.3.2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.3.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 4.3.2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.3.2.3.2.2
Divisez par .
Étape 4.3.2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.3.3.1
Divisez par .
Étape 4.3.2.4
La plage du sinus est . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Aucune solution
Étape 4.3.3
Le domaine est l’ensemble des nombres réels.
Étape 4.4
Comme le domaine de n’est pas égal à la plage de , n’est pas un inverse de .
Il n’y a pas d’inverse
Il n’y a pas d’inverse
Étape 5