Trigonométrie Exemples

Trouver la fonction réciproque y=4cot(x/2)
Étape 1
Interchangez les variables.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.3
Prenez la cotangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la cotangente.
Étape 2.4
Multipliez les deux côtés de l’équation par .
Étape 2.5
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.1
Annulez le facteur commun.
Étape 2.5.1.2
Réécrivez l’expression.
Étape 3
Remplacez par pour montrer la réponse finale.
Étape 4
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour vérifier l’inverse, vérifiez si et .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez la fonction de résultat composé.
Étape 4.2.2
Évaluez en remplaçant la valeur de par .
Étape 4.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Annulez le facteur commun.
Étape 4.2.3.2
Divisez par .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez la fonction de résultat composé.
Étape 4.3.2
Évaluez en remplaçant la valeur de par .
Étape 4.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Annulez le facteur commun.
Étape 4.3.3.2
Divisez par .
Étape 4.3.4
Les fonctions cotangente et arc cotangente sont inverses.
Étape 4.3.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Annulez le facteur commun.
Étape 4.3.5.2
Réécrivez l’expression.
Étape 4.4
Comme et , est l’inverse de .