Entrer un problème...
Trigonométrie Exemples
Étape 1
Élevez au carré les deux côtés de l’équation.
Étape 2
Étape 2.1
Simplifiez chaque terme.
Étape 2.1.1
Réécrivez comme .
Étape 2.1.2
Développez à l’aide de la méthode FOIL.
Étape 2.1.2.1
Appliquez la propriété distributive.
Étape 2.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.3
Appliquez la propriété distributive.
Étape 2.1.3
Simplifiez et associez les termes similaires.
Étape 2.1.3.1
Simplifiez chaque terme.
Étape 2.1.3.1.1
Multipliez .
Étape 2.1.3.1.1.1
Multipliez par .
Étape 2.1.3.1.1.2
Élevez à la puissance .
Étape 2.1.3.1.1.3
Élevez à la puissance .
Étape 2.1.3.1.1.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.1.1.5
Additionnez et .
Étape 2.1.3.1.2
Remettez dans l’ordre et .
Étape 2.1.3.1.3
Ajoutez des parenthèses.
Étape 2.1.3.1.4
Remettez dans l’ordre et .
Étape 2.1.3.1.5
Appliquez l’identité d’angle double du sinus.
Étape 2.1.3.1.6
Ajoutez des parenthèses.
Étape 2.1.3.1.7
Remettez dans l’ordre et .
Étape 2.1.3.1.8
Appliquez l’identité d’angle double du sinus.
Étape 2.1.3.1.9
Multipliez .
Étape 2.1.3.1.9.1
Multipliez par .
Étape 2.1.3.1.9.2
Élevez à la puissance .
Étape 2.1.3.1.9.3
Élevez à la puissance .
Étape 2.1.3.1.9.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.1.9.5
Additionnez et .
Étape 2.1.3.2
Soustrayez de .
Étape 2.1.4
Réécrivez comme .
Étape 2.1.5
Développez à l’aide de la méthode FOIL.
Étape 2.1.5.1
Appliquez la propriété distributive.
Étape 2.1.5.2
Appliquez la propriété distributive.
Étape 2.1.5.3
Appliquez la propriété distributive.
Étape 2.1.6
Simplifiez et associez les termes similaires.
Étape 2.1.6.1
Simplifiez chaque terme.
Étape 2.1.6.1.1
Multipliez .
Étape 2.1.6.1.1.1
Multipliez par .
Étape 2.1.6.1.1.2
Élevez à la puissance .
Étape 2.1.6.1.1.3
Élevez à la puissance .
Étape 2.1.6.1.1.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.6.1.1.5
Additionnez et .
Étape 2.1.6.1.2
Ajoutez des parenthèses.
Étape 2.1.6.1.3
Remettez dans l’ordre et .
Étape 2.1.6.1.4
Appliquez l’identité d’angle double du sinus.
Étape 2.1.6.1.5
Remettez dans l’ordre et .
Étape 2.1.6.1.6
Ajoutez des parenthèses.
Étape 2.1.6.1.7
Remettez dans l’ordre et .
Étape 2.1.6.1.8
Appliquez l’identité d’angle double du sinus.
Étape 2.1.6.1.9
Multipliez .
Étape 2.1.6.1.9.1
Multipliez par .
Étape 2.1.6.1.9.2
Élevez à la puissance .
Étape 2.1.6.1.9.3
Élevez à la puissance .
Étape 2.1.6.1.9.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.6.1.9.5
Additionnez et .
Étape 2.1.6.2
Additionnez et .
Étape 2.2
Simplifiez les termes.
Étape 2.2.1
Associez les termes opposés dans .
Étape 2.2.1.1
Additionnez et .
Étape 2.2.1.2
Additionnez et .
Étape 2.2.2
Déplacez .
Étape 2.2.3
Factorisez à partir de .
Étape 2.2.4
Factorisez à partir de .
Étape 2.2.5
Factorisez à partir de .
Étape 2.3
Réorganisez les termes.
Étape 2.4
Appliquez l’identité pythagoricienne.
Étape 2.5
Simplifiez en factorisant.
Étape 2.5.1
Factorisez à partir de .
Étape 2.5.2
Factorisez à partir de .
Étape 2.5.3
Factorisez à partir de .
Étape 2.6
Appliquez l’identité pythagoricienne.
Étape 2.7
Simplifiez les termes.
Étape 2.7.1
Simplifiez chaque terme.
Étape 2.7.1.1
Multipliez par .
Étape 2.7.1.2
Multipliez par .
Étape 2.7.2
Simplifiez l’expression.
Étape 2.7.2.1
Additionnez et .
Étape 2.7.2.2
Élevez à la puissance .
Étape 3
Élevez à la puissance .
Étape 4
Comme , l’équation sera toujours vraie pour toute valeur de .
Tous les nombres réels
Étape 5
Le résultat peut être affiché en différentes formes.
Tous les nombres réels
Notation d’intervalle :