Trigonométrie Exemples

Resolva para x sin(x)>cos(x)
Étape 1
Divisez chaque terme dans l’équation par .
Étape 2
Convertissez de à .
Étape 3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Annulez le facteur commun.
Étape 3.2
Réécrivez l’expression.
Étape 4
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 5
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
La valeur exacte de est .
Étape 6
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 7
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Associez et .
Étape 7.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Déplacez à gauche de .
Étape 7.3.2
Additionnez et .
Étape 8
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
La période de la fonction peut être calculée en utilisant .
Étape 8.2
Remplacez par dans la formule pour la période.
Étape 8.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 8.4
Divisez par .
Étape 9
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 10
Consolidez les réponses.
, pour tout entier
Étape 11
Utilisez chaque racine pour créer des intervalles de test.
Étape 12
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.1.2
Remplacez par dans l’inégalité d’origine.
Étape 12.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 12.2
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Vrai
Étape 13
La solution se compose de tous les intervalles vrais.
, pour tout entier
Étape 14