Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Simplifiez .
Étape 1.1.1
Convertissez en fraction irrégulière.
Étape 1.1.1.1
Un nombre mixte est une addition des ses parties entière et fractionnaire.
Étape 1.1.1.2
Additionnez et .
Étape 1.1.1.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.1.2.2
Associez et .
Étape 1.1.1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.1.2.4
Simplifiez le numérateur.
Étape 1.1.1.2.4.1
Multipliez par .
Étape 1.1.1.2.4.2
Additionnez et .
Étape 1.1.2
Multipliez par .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
n’a pas de facteur hormis et .
est un nombre premier
Étape 2.5
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.7
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 2.8
Le facteur pour est lui-même.
se produit fois.
Étape 2.9
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.10
Multipliez par .
Étape 2.11
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Annulez le facteur commun de .
Étape 3.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.1.2
Annulez le facteur commun.
Étape 3.2.1.1.3
Réécrivez l’expression.
Étape 3.2.1.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.3
Annulez le facteur commun de .
Étape 3.2.1.3.1
Factorisez à partir de .
Étape 3.2.1.3.2
Annulez le facteur commun.
Étape 3.2.1.3.3
Réécrivez l’expression.
Étape 3.2.1.4
Annulez le facteur commun de .
Étape 3.2.1.4.1
Factorisez à partir de .
Étape 3.2.1.4.2
Annulez le facteur commun.
Étape 3.2.1.4.3
Réécrivez l’expression.
Étape 3.2.1.5
Annulez le facteur commun de .
Étape 3.2.1.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.5.2
Factorisez à partir de .
Étape 3.2.1.5.3
Annulez le facteur commun.
Étape 3.2.1.5.4
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Multipliez .
Étape 3.3.1.1
Multipliez par .
Étape 3.3.1.2
Multipliez par .
Étape 4
Étape 4.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4.3
Simplifiez
Étape 4.3.1
Simplifiez le numérateur.
Étape 4.3.1.1
Élevez à la puissance .
Étape 4.3.1.2
Multipliez .
Étape 4.3.1.2.1
Multipliez par .
Étape 4.3.1.2.2
Multipliez par .
Étape 4.3.1.3
Soustrayez de .
Étape 4.3.1.4
Réécrivez comme .
Étape 4.3.1.5
Réécrivez comme .
Étape 4.3.1.6
Réécrivez comme .
Étape 4.3.1.7
Réécrivez comme .
Étape 4.3.1.7.1
Factorisez à partir de .
Étape 4.3.1.7.2
Réécrivez comme .
Étape 4.3.1.8
Extrayez les termes de sous le radical.
Étape 4.3.1.9
Déplacez à gauche de .
Étape 4.3.2
Multipliez par .
Étape 4.3.3
Simplifiez .
Étape 4.4
La réponse finale est la combinaison des deux solutions.