Trigonométrie Exemples

Resolva o Sistema de @WORD csc(x)>0 , cot(x)<0
,
Étape 1
La plage de la cosécante est et . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Étape 2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Prenez la cotangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la cotangente.
Étape 2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
La valeur exacte de est .
Étape 2.3
La fonction cotangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 2.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Associez et .
Étape 2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Déplacez à gauche de .
Étape 2.4.3.2
Additionnez et .
Étape 2.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 2.5.2
Remplacez par dans la formule pour la période.
Étape 2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.5.4
Divisez par .
Étape 2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 2.7
Consolidez les réponses.
, pour tout entier
Étape 2.8
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 2.8.2
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
, pour tout entier
, pour tout entier
Étape 2.9
Utilisez chaque racine pour créer des intervalles de test.
Étape 2.10
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.10.1.2
Remplacez par dans l’inégalité d’origine.
Étape 2.10.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 2.10.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.10.2.2
Remplacez par dans l’inégalité d’origine.
Étape 2.10.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 2.10.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.10.3.2
Remplacez par dans l’inégalité d’origine.
Étape 2.10.3.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 2.10.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 2.11
La solution se compose de tous les intervalles vrais.
, pour tout entier
, pour tout entier
Étape 3
Find the intersection of No solution and .
Aucune solution