Trigonométrie Exemples

Étape 1
Déterminez les asymptotes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction tangente, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.2.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 1.2.3.2.2
Factorisez à partir de .
Étape 1.2.3.2.3
Annulez le facteur commun.
Étape 1.2.3.2.4
Réécrivez l’expression.
Étape 1.2.3.3
Placez le signe moins devant la fraction.
Étape 1.3
Définissez l’intérieur de la fonction tangente égal à .
Étape 1.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Divisez chaque terme dans par .
Étape 1.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1.1
Annulez le facteur commun.
Étape 1.4.2.1.2
Divisez par .
Étape 1.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.4.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.2.1
Annulez le facteur commun.
Étape 1.4.3.2.2
Réécrivez l’expression.
Étape 1.5
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 1.6
Déterminez la période pour déterminer où les asymptotes verticales existent.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
est d’environ qui est positif, alors retirez la valeur absolue
Étape 1.6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.6.2.1
Annulez le facteur commun.
Étape 1.6.2.2
Réécrivez l’expression.
Étape 1.7
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier.
Étape 1.8
La tangente n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : est un entier
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : est un entier
Étape 2
Utilisez la forme afin de déterminer les variables pour déterminer l’amplitude, la période, le déphasage et le décalage vertical.
Étape 3
Comme le graphe de la fonction n’a pas de valeur maximale ni minimale, il ne peut y avoir aucune valeur pour l’amplitude.
Amplitude : Aucune
Étape 4
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
La période de la fonction peut être calculée en utilisant .
Étape 4.2
Remplacez par dans la formule pour la période.
Étape 4.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 4.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Annulez le facteur commun.
Étape 4.4.2
Réécrivez l’expression.
Étape 5
Déterminez le déphasage en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Le déphasage de la fonction peut être calculé à partir de .
Déphasage :
Étape 5.2
Remplacez les valeurs de et dans l’équation pour le déphasage.
Déphasage :
Étape 5.3
Divisez par .
Déphasage :
Déphasage :
Étape 6
Indiquez les propriétés de la fonction trigonométrique.
Amplitude : Aucune
Période :
Déphasage : Aucune
Décalage vertical : Aucune
Étape 7
La fonction trigonométrique peut être représentée graphiquement en utilisant l’amplitude, la période, le déphasage, le décalage vertical et les points.
Asymptotes verticales : est un entier
Amplitude : Aucune
Période :
Déphasage : Aucune
Décalage vertical : Aucune
Étape 8