Trigonométrie Exemples

Trouver la fonction réciproque f(x)=cos(x)^5
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Supprimez les parenthèses.
Étape 5.2.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Les fonctions cosinus et arc cosinus sont inverses.
Étape 5.3.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.1
Utilisez pour réécrire comme .
Étape 5.3.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.4.3
Associez et .
Étape 5.3.4.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.4.1
Annulez le facteur commun.
Étape 5.3.4.4.2
Réécrivez l’expression.
Étape 5.3.4.5
Simplifiez
Étape 5.4
Comme et , est l’inverse de .