Entrer un problème...
Trigonométrie Exemples
Étape 1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 2
Étape 2.1
La valeur exacte de est .
Étape 3
Étape 3.1
Ajoutez aux deux côtés de l’inégalité.
Étape 3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 3.3.1
Multipliez par .
Étape 3.3.2
Multipliez par .
Étape 3.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.5
Simplifiez le numérateur.
Étape 3.5.1
Déplacez à gauche de .
Étape 3.5.2
Additionnez et .
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.3.2
Annulez le facteur commun de .
Étape 4.3.2.1
Factorisez à partir de .
Étape 4.3.2.2
Annulez le facteur commun.
Étape 4.3.2.3
Réécrivez l’expression.
Étape 5
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 6
Étape 6.1
Simplifiez .
Étape 6.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.1.2
Associez les fractions.
Étape 6.1.2.1
Associez et .
Étape 6.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.3
Simplifiez le numérateur.
Étape 6.1.3.1
Déplacez à gauche de .
Étape 6.1.3.2
Additionnez et .
Étape 6.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 6.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 6.2.3.1
Multipliez par .
Étape 6.2.3.2
Multipliez par .
Étape 6.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.5
Simplifiez le numérateur.
Étape 6.2.5.1
Déplacez à gauche de .
Étape 6.2.5.2
Additionnez et .
Étape 6.3
Divisez chaque terme dans par et simplifiez.
Étape 6.3.1
Divisez chaque terme dans par .
Étape 6.3.2
Simplifiez le côté gauche.
Étape 6.3.2.1
Annulez le facteur commun de .
Étape 6.3.2.1.1
Annulez le facteur commun.
Étape 6.3.2.1.2
Divisez par .
Étape 6.3.3
Simplifiez le côté droit.
Étape 6.3.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.3.3.2
Multipliez .
Étape 6.3.3.2.1
Multipliez par .
Étape 6.3.3.2.2
Multipliez par .
Étape 7
Étape 7.1
La période de la fonction peut être calculée en utilisant .
Étape 7.2
Remplacez par dans la formule pour la période.
Étape 7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 9
Consolidez les réponses.
, pour tout entier
Étape 10
Étape 10.1
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 10.2
Résolvez .
Étape 10.2.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 10.2.1.1
Ajoutez aux deux côtés de l’équation.
Étape 10.2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.2.1.3
Additionnez et .
Étape 10.2.1.4
Annulez le facteur commun de .
Étape 10.2.1.4.1
Annulez le facteur commun.
Étape 10.2.1.4.2
Divisez par .
Étape 10.2.2
Divisez chaque terme dans par et simplifiez.
Étape 10.2.2.1
Divisez chaque terme dans par .
Étape 10.2.2.2
Simplifiez le côté gauche.
Étape 10.2.2.2.1
Annulez le facteur commun de .
Étape 10.2.2.2.1.1
Annulez le facteur commun.
Étape 10.2.2.2.1.2
Divisez par .
Étape 10.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
, pour tout entier
, pour tout entier
Étape 11
Utilisez chaque racine pour créer des intervalles de test.
Étape 12
Étape 12.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 12.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.1.2
Remplacez par dans l’inégalité d’origine.
Étape 12.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 12.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 12.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.2.2
Remplacez par dans l’inégalité d’origine.
Étape 12.2.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 12.3
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Faux
Étape 13
La solution se compose de tous les intervalles vrais.
, pour tout entier
Étape 14
Convertissez l’inégalité en une notation d’intervalle.
Étape 15