Entrer un problème...
Trigonométrie Exemples
Étape 1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 2
Étape 2.1
La valeur exacte de est .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 3.4.1
Multipliez par .
Étape 3.4.2
Multipliez par .
Étape 3.4.3
Multipliez par .
Étape 3.4.4
Multipliez par .
Étape 3.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.6
Simplifiez le numérateur.
Étape 3.6.1
Déplacez à gauche de .
Étape 3.6.2
Multipliez par .
Étape 3.6.3
Soustrayez de .
Étape 3.7
Placez le signe moins devant la fraction.
Étape 4
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 5
Étape 5.1
Simplifiez .
Étape 5.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.1.2
Associez les fractions.
Étape 5.1.2.1
Associez et .
Étape 5.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 5.1.3
Simplifiez le numérateur.
Étape 5.1.3.1
Déplacez à gauche de .
Étape 5.1.3.2
Soustrayez de .
Étape 5.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 5.2.1
Soustrayez des deux côtés de l’équation.
Étape 5.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 5.2.4.1
Multipliez par .
Étape 5.2.4.2
Multipliez par .
Étape 5.2.4.3
Multipliez par .
Étape 5.2.4.4
Multipliez par .
Étape 5.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.6
Simplifiez le numérateur.
Étape 5.2.6.1
Multipliez par .
Étape 5.2.6.2
Multipliez par .
Étape 5.2.6.3
Soustrayez de .
Étape 6
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.4
Divisez par .
Étape 7
Étape 7.1
Ajoutez à pour déterminer l’angle positif.
Étape 7.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.3
Associez les fractions.
Étape 7.3.1
Associez et .
Étape 7.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.4
Simplifiez le numérateur.
Étape 7.4.1
Multipliez par .
Étape 7.4.2
Soustrayez de .
Étape 7.5
Indiquez les nouveaux angles.
Étape 8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier