Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction cotangente, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 1.2
Résolvez .
Étape 1.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.2.1
Divisez chaque terme dans par .
Étape 1.2.2.2
Simplifiez le côté gauche.
Étape 1.2.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.2.1.2
Divisez par .
Étape 1.2.2.3
Simplifiez le côté droit.
Étape 1.2.2.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.2.2.3.2
Multipliez .
Étape 1.2.2.3.2.1
Multipliez par .
Étape 1.2.2.3.2.2
Multipliez par .
Étape 1.3
Définissez l’intérieur de la fonction cotangente égal à .
Étape 1.4
Résolvez .
Étape 1.4.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 1.4.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.4.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.4.1.3
Associez et .
Étape 1.4.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.4.1.5
Simplifiez le numérateur.
Étape 1.4.1.5.1
Déplacez à gauche de .
Étape 1.4.1.5.2
Soustrayez de .
Étape 1.4.2
Divisez chaque terme dans par et simplifiez.
Étape 1.4.2.1
Divisez chaque terme dans par .
Étape 1.4.2.2
Simplifiez le côté gauche.
Étape 1.4.2.2.1
Annulez le facteur commun de .
Étape 1.4.2.2.1.1
Annulez le facteur commun.
Étape 1.4.2.2.1.2
Divisez par .
Étape 1.4.2.3
Simplifiez le côté droit.
Étape 1.4.2.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.4.2.3.2
Multipliez .
Étape 1.4.2.3.2.1
Multipliez par .
Étape 1.4.2.3.2.2
Multipliez par .
Étape 1.5
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 1.6
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.7
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier.
Étape 1.8
La cotangente n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : où est un entier
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : où est un entier
Étape 2
Utilisez la forme afin de déterminer les variables pour déterminer l’amplitude, la période, le déphasage et le décalage vertical.
Étape 3
Comme le graphe de la fonction n’a pas de valeur maximale ni minimale, il ne peut y avoir aucune valeur pour l’amplitude.
Amplitude : Aucune
Étape 4
Étape 4.1
La période de la fonction peut être calculée en utilisant .
Étape 4.2
Remplacez par dans la formule pour la période.
Étape 4.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5
Étape 5.1
Le déphasage de la fonction peut être calculé à partir de .
Déphasage :
Étape 5.2
Remplacez les valeurs de et dans l’équation pour le déphasage.
Déphasage :
Étape 5.3
Multipliez le numérateur par la réciproque du dénominateur.
Déphasage :
Étape 5.4
Multipliez .
Étape 5.4.1
Multipliez par .
Déphasage :
Étape 5.4.2
Multipliez par .
Déphasage :
Déphasage :
Déphasage :
Étape 6
Indiquez les propriétés de la fonction trigonométrique.
Amplitude : Aucune
Période :
Déphasage : ( à gauche)
Décalage vertical : Aucune
Étape 7
La fonction trigonométrique peut être représentée graphiquement en utilisant l’amplitude, la période, le déphasage, le décalage vertical et les points.
Asymptotes verticales : où est un entier
Amplitude : Aucune
Période :
Déphasage : ( à gauche)
Décalage vertical : Aucune
Étape 8