Trigonométrie Exemples

Resolva para ? sin(x)^2cos(x)=cos(x)
Étape 1
Remplacez le par d’après l’identité .
Étape 2
Appliquez la propriété distributive.
Étape 3
Multipliez par .
Étape 4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déplacez .
Étape 4.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Élevez à la puissance .
Étape 4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3
Additionnez et .
Étape 5
Remettez le polynôme dans l’ordre.
Étape 6
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Soustrayez des deux côtés de l’équation.
Étape 6.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Soustrayez de .
Étape 6.2.2
Additionnez et .
Étape 7
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Divisez chaque terme dans par .
Étape 7.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 7.2.2
Divisez par .
Étape 7.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Divisez par .
Étape 8
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 9
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Réécrivez comme .
Étape 9.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 10
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 11
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
La valeur exacte de est .
Étape 12
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 13
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 13.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1
Associez et .
Étape 13.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 13.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 13.3.1
Multipliez par .
Étape 13.3.2
Soustrayez de .
Étape 14
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 14.1
La période de la fonction peut être calculée en utilisant .
Étape 14.2
Remplacez par dans la formule pour la période.
Étape 14.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 14.4
Divisez par .
Étape 15
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 16
Consolidez les réponses.
, pour tout entier