Trigonométrie Exemples

Resolva para x 2x^(-2/5)-4=4
Étape 1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Additionnez et .
Étape 2
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.1.1.2
Associez et .
Étape 3.1.1.3
Modifiez le signe de l’exposant en réécrivant la base comme sa réciproque.
Étape 3.1.1.4
Appliquez la règle de produit à .
Étape 3.1.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.5.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.5.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.1.1.5.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.5.1.2.1
Annulez le facteur commun.
Étape 3.1.1.5.1.2.2
Réécrivez l’expression.
Étape 3.1.1.5.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.5.1.3.1
Annulez le facteur commun.
Étape 3.1.1.5.1.3.2
Réécrivez l’expression.
Étape 3.1.1.5.2
Simplifiez
Étape 3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.2
Multipliez les deux côtés de l’équation par .
Étape 4.3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1.1
Annulez le facteur commun.
Étape 4.3.1.1.2
Réécrivez l’expression.
Étape 4.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Associez et .
Étape 4.4
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5
Multipliez les deux côtés de l’équation par .
Étape 4.6
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1.1.1
Annulez le facteur commun.
Étape 4.6.1.1.2
Réécrivez l’expression.
Étape 4.6.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1
Associez et .
Étape 4.7
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :