Trigonométrie Exemples

Resolva para x 2cos(1/2x)- racine carrée de 2=0
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 4
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Associez et .
Étape 5
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
La valeur exacte de est .
Étape 6
Multipliez les deux côtés de l’équation par .
Étape 7
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1.1
Annulez le facteur commun.
Étape 7.1.1.2
Réécrivez l’expression.
Étape 7.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Factorisez à partir de .
Étape 7.2.1.2
Annulez le facteur commun.
Étape 7.2.1.3
Réécrivez l’expression.
Étape 8
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 9
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez les deux côtés de l’équation par .
Étape 9.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1.1.1
Annulez le facteur commun.
Étape 9.2.1.1.2
Réécrivez l’expression.
Étape 9.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 9.2.2.1.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1.2.1
Associez et .
Étape 9.2.2.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 9.2.2.1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1.2.3.1
Factorisez à partir de .
Étape 9.2.2.1.2.3.2
Annulez le facteur commun.
Étape 9.2.2.1.2.3.3
Réécrivez l’expression.
Étape 9.2.2.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1.3.1
Multipliez par .
Étape 9.2.2.1.3.2
Soustrayez de .
Étape 10
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
La période de la fonction peut être calculée en utilisant .
Étape 10.2
Remplacez par dans la formule pour la période.
Étape 10.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 10.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 10.5
Multipliez par .
Étape 11
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier