Trigonométrie Exemples

Resolva para x x^2+120=(3x+20)^2
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez.
Étape 1.2
Réécrivez comme .
Étape 1.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Appliquez la propriété distributive.
Étape 1.4
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.4.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1
Déplacez .
Étape 1.4.1.2.2
Multipliez par .
Étape 1.4.1.3
Multipliez par .
Étape 1.4.1.4
Multipliez par .
Étape 1.4.1.5
Multipliez par .
Étape 1.4.1.6
Multipliez par .
Étape 1.4.2
Additionnez et .
Étape 2
Comme est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 3
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Soustrayez de .
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Soustrayez de .
Étape 6
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Factorisez à partir de .
Étape 6.2
Factorisez à partir de .
Étape 6.3
Factorisez à partir de .
Étape 6.4
Factorisez à partir de .
Étape 6.5
Factorisez à partir de .
Étape 7
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Divisez chaque terme dans par .
Étape 7.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Annulez le facteur commun.
Étape 7.2.1.2
Divisez par .
Étape 7.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Divisez par .
Étape 8
Utilisez la formule quadratique pour déterminer les solutions.
Étape 9
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Élevez à la puissance .
Étape 10.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.2.1
Multipliez par .
Étape 10.1.2.2
Multipliez par .
Étape 10.1.3
Soustrayez de .
Étape 10.2
Multipliez par .
Étape 11
La réponse finale est la combinaison des deux solutions.
Étape 12
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :