Trigonométrie Exemples

Resolva para x 1=tan(x)- racine carrée de 3
Étape 1
Réécrivez l’équation comme .
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Convertissez le côté droit de l’équation en son équivalent décimal.
Étape 4
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 5
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Évaluez .
Étape 6
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Supprimez les parenthèses.
Étape 7.2
Supprimez les parenthèses.
Étape 7.3
Additionnez et .
Étape 8
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
La période de la fonction peut être calculée en utilisant .
Étape 8.2
Remplacez par dans la formule pour la période.
Étape 8.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 8.4
Divisez par .
Étape 9
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 10
Consolidez et en .
, pour tout entier